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Over 10 million images, 1000 object classes

Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge. ĲCV 2015.

2011: Traditional computer vision achieves accuracy ~74%
2012: Initial deep neural network approach accuracy ~84%

2015 onwards: Deep learning achieves accuracy 96%+
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Deep Learning Takeover

• Top computer vision conferences (CVPR, ICCV, ECCV) are 
now nearly all about deep learning

• Top machine learning conferences (ICML, NIPS) have heavily 
been taken over by deep learning

Academia:

Extremely useful in practice:
• Near human level image classification 

(including handwritten digit recognition)
• Near human level speech recognition
• Improvements in machine translation, text-to-speech
• Self-driving cars
• Better than humans at playing Go

Heavily dominated by industry now!



Google DeepMind’s AlphaGo vs Lee Sedol, 2016



Is it all hype?



Source: labsix



Source: Gizmodo article “This Neural Network's Hilariously Bad Image Descriptions Are Still 
Advanced AI”. September 16, 2015. (They’re using the NeuralTalk image-to-caption software.)



Source: Goodfellow, Shlens, and Szegedy. Explaining and Harnessing Adversarial Examples. 
ICLR 2015.

panda 
~58% confidence

adversarial 
noise

gibbon 
~99% confidence
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Another AI Winter?
~1970’s: First AI winter over symbolic AI

~1980’s: Second AI winter over “expert systems”

Every time: Lots of hype, explosion in funding, then bubble bursts
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Serre, 2014Slide by Phillip Isola



Brain/Machine “clown fish”

Basic Idea

Slide by Phillip Isola



Object Recognition

Slide by Phillip Isola



Edges

Texture

Colors

Object Recognition

Slide by Phillip Isola



Edges

Texture

Colors

Segments

Parts

Object Recognition

Slide by Phillip Isola



Edges

Texture

Colors

Segments

Parts
“clown fish”

Object Recognition

Slide by Phillip Isola



Edges

Texture

Colors

Segments

Parts
“clown fish”

Feature extractors Classifier

Object Recognition

Slide by Phillip Isola



“clown fish”

Edges

Feature extractors

Texture

Colors

Segments

Parts

Classifier

Learned

Object Recognition

Slide by Phillip Isola



“clown fish”

Learned

Neural Network

Slide by Phillip Isola



“clown fish”

Learned

Neural Network

Slide by Phillip Isola



“clown fish”

Learned

Deep Neural Network

Slide by Phillip Isola
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Crumpled Paper Analogy

Analogy: Francois Chollet, photo: George Chen

binary classification: 2 crumpled 
sheets of paper corresponding to the 

different classes

deep learning: series (“layers”) of 
simple unfolding operations to try to 

disentangle the 2 sheets
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Structure Present in Data Matters

The best performing neural network architectures account for 
the kind of data they process!

• Image analysis: convolutional neural networks (convnets) 
neatly incorporates intuitive image processing ideas  
(for example: if a car appears in an image, even if you shift it 
over by many pixels, it’s still a car)

• Time series analysis: recurrent neural networks (RNNs) 
incorporates ability to remember and forget things over time  
(note: text naturally comprise of time series as words appear 
one after another in a meaningful sequence!)
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Why Does Deep Learning Work?
Actually the ideas behind deep learning are old (~1980’s)

• Big data

• Better hardware

GPU’s
TPU’s

CPU’s 
& Moore’s law

• Better algorithms
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Handwritten Digit 
Recognition Example

Walkthrough of building a 1-layer and then a 2-layer neural net
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length 784 vector 
(784 input neurons)
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(1D numpy array 
with 10 entries)

…

dense[0] = np.dot(input, W[:, 0]) + b[0]
dense[1] = np.dot(input, W[:, 1]) + b[1]

dense[j] =
783�

i=0

input[i] W[i, j]�

+ b[j]
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length 784 vector 
(784 input neurons)

28x28 image

flatten & 
treat as 

1D vector

We want the output of the 
dense layer to encode 

probabilities for whether the 
input image is a 0, 1, 2, …, 9  

but as of now we aren’t 
providing any sort of 

information to enforce this
dense layer with 

10 neurons, 
softmax activation, 
parameters W, b
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length 784 vector 
(784 input neurons)

28x28 image
dense layer with 

10 neurons, 
softmax activation

Training label: 6

Loss/“error” error
Popular loss function for 

classification (> 2 classes): 
categorical cross entropy

Error is 
averaged 

across training 
examples

dense layer 
with 512 

neurons, ReLU 
activation

1
Pr(digit 6)log

Learning this neural net 
means learning parameters 

of both dense layers!



Handwritten Digit Recognition

Demo part 3



Architecting Neural Nets



Architecting Neural Nets
• Increasing number of layers (depth) makes neural net more 

complex



Architecting Neural Nets
• Increasing number of layers (depth) makes neural net more 

complex
• Can approximate more functions



Architecting Neural Nets
• Increasing number of layers (depth) makes neural net more 

complex
• Can approximate more functions
• More parameters needed



Architecting Neural Nets
• Increasing number of layers (depth) makes neural net more 

complex
• Can approximate more functions
• More parameters needed

• More training data may be needed



Architecting Neural Nets
• Increasing number of layers (depth) makes neural net more 

complex
• Can approximate more functions
• More parameters needed

• More training data may be needed

• Designing neural net architectures is a bit of an art



Architecting Neural Nets
• Increasing number of layers (depth) makes neural net more 

complex
• Can approximate more functions
• More parameters needed

• More training data may be needed

• Designing neural net architectures is a bit of an art
• How to select the number of neurons for intermediate 

layers?



Architecting Neural Nets
• Increasing number of layers (depth) makes neural net more 

complex
• Can approximate more functions
• More parameters needed

• More training data may be needed

• Designing neural net architectures is a bit of an art
• How to select the number of neurons for intermediate 

layers?
• Very common in practice: modify existing architectures 

that are known to work well (e.g., VGG-16 for computer 
vision/image processing)



GoogLeNet 2014



Deep Learning



Deep Learning

• Inspired by biological neural nets but otherwise not the same 
at all (biological neural nets do not work like deep nets)



Deep Learning

• Inspired by biological neural nets but otherwise not the same 
at all (biological neural nets do not work like deep nets)

• Learns a layered representation



Deep Learning

• Inspired by biological neural nets but otherwise not the same 
at all (biological neural nets do not work like deep nets)

• Learns a layered representation

• Tries to get rid of manual feature engineering



Deep Learning

• Inspired by biological neural nets but otherwise not the same 
at all (biological neural nets do not work like deep nets)

• Learns a layered representation

• Tries to get rid of manual feature engineering

• Upcoming: enforce structure using special layers



Deep Learning

• Inspired by biological neural nets but otherwise not the same 
at all (biological neural nets do not work like deep nets)

• Learns a layered representation

• Tries to get rid of manual feature engineering

• Upcoming: enforce structure using special layers

• Can think of this as constraining what features are learned


