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Over 10 million images, 1000 object classes

Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge. ĲCV 2015.

2011: Traditional computer vision achieves accuracy ~74%
2012: Initial deep neural network approach accuracy ~84%

2015 onwards: Deep learning achieves accuracy 96%+
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Deep Learning Takeover

• Top computer vision conferences (CVPR, ICCV, ECCV) are 
now nearly all about deep learning

• Top machine learning conferences (ICML, NIPS) have heavily 
been taken over by deep learning

Academia:

Extremely useful in practice:
• Near human level image classification 

(including handwritten digit recognition)
• Near human level speech recognition
• Improvements in machine translation, text-to-speech
• Self-driving cars
• Better than humans at playing Go

Heavily dominated by industry now!



Google DeepMind’s AlphaGo vs Lee Sedol, 2016



Is it all hype?



Source: labsix



Source: Gizmodo article “This Neural Network's Hilariously Bad Image Descriptions Are Still 
Advanced AI”. September 16, 2015. (They’re using the NeuralTalk image-to-caption software.)



Source: Goodfellow, Shlens, and Szegedy. Explaining and Harnessing Adversarial Examples. 
ICLR 2015.

panda 
~58% confidence

adversarial 
noise

gibbon 
~99% confidence
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Another AI Winter?
~1970’s: First AI winter over symbolic AI

~1980’s: Second AI winter over “expert systems”

Every time: Lots of hype, explosion in funding, then bubble bursts
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Serre, 2014Slide by Phillip Isola
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Learned

Deep Neural Network

Slide by Phillip Isola
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Crumpled Paper Analogy

Analogy: Francois Chollet, photo: George Chen

binary classification: 2 crumpled 
sheets of paper corresponding to the 

different classes

deep learning: series (“layers”) of 
simple unfolding operations to try to 

disentangle the 2 sheets
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Structure Present in Data Matters

The best performing neural network architectures account for 
the kind of data they process!

• Image analysis: convolutional neural networks (convnets) 
neatly incorporates intuitive image processing ideas  
(for example: if a car appears in an image, even if you shift it 
over by many pixels, it’s still a car)

• Time series analysis: recurrent neural networks (RNNs) 
incorporates ability to remember and forget things over time  
(note: text naturally comprise of time series as words appear 
one after another in a meaningful sequence!)
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Why Does Deep Learning Work?
Actually the ideas behind deep learning are old (~1980’s)

• Big data

• Better hardware

GPU’s
TPU’s

CPU’s 
& Moore’s law

• Better algorithms
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Handwritten Digit 
Recognition Example

Walkthrough of building a 1-layer and then a 2-layer neural net
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length 784 vector 
(784 input neurons)
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…

dense[0] = np.dot(input, W[:, 0]) + b[0]
dense[1] = np.dot(input, W[:, 1]) + b[1]

dense[j] =
783�

i=0

input[i] W[i, j]�

+ b[j]
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length 784 vector 
(784 input neurons)

28x28 image

flatten & 
treat as 

1D vector

We want the output of the 
dense layer to encode 

probabilities for whether the 
input image is a 0, 1, 2, …, 9  

but as of now we aren’t 
providing any sort of 

information to enforce this
dense layer with 

10 neurons, 
softmax activation, 
parameters W, b
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length 784 vector 
(784 input neurons)

28x28 image
dense layer with 

10 neurons, 
softmax activation

Training label: 6

Loss/“error” error
Popular loss function for 

classification (> 2 classes): 
categorical cross entropy

Error is 
averaged 

across training 
examples

dense layer 
with 512 

neurons, ReLU 
activation

1
Pr(digit 6)log

Learning this neural net 
means learning parameters 

of both dense layers!



Handwritten Digit Recognition

Demo part 3



Architecting Neural Nets



Architecting Neural Nets
• Increasing number of layers (depth) makes neural net more 

complex



Architecting Neural Nets
• Increasing number of layers (depth) makes neural net more 

complex
• Can approximate more functions



Architecting Neural Nets
• Increasing number of layers (depth) makes neural net more 

complex
• Can approximate more functions
• More parameters needed



Architecting Neural Nets
• Increasing number of layers (depth) makes neural net more 

complex
• Can approximate more functions
• More parameters needed

• More training data may be needed



Architecting Neural Nets
• Increasing number of layers (depth) makes neural net more 

complex
• Can approximate more functions
• More parameters needed

• More training data may be needed

• Designing neural net architectures is a bit of an art



Architecting Neural Nets
• Increasing number of layers (depth) makes neural net more 

complex
• Can approximate more functions
• More parameters needed

• More training data may be needed

• Designing neural net architectures is a bit of an art
• How to select the number of neurons for intermediate 

layers?



Architecting Neural Nets
• Increasing number of layers (depth) makes neural net more 

complex
• Can approximate more functions
• More parameters needed

• More training data may be needed

• Designing neural net architectures is a bit of an art
• How to select the number of neurons for intermediate 

layers?
• Very common in practice: modify existing architectures 

that are known to work well (e.g., VGG-16 for computer 
vision/image processing)



GoogLeNet 2014



Deep Learning



Deep Learning

• Inspired by biological neural nets but otherwise not the same 
at all (biological neural nets do not work like deep nets)



Deep Learning

• Inspired by biological neural nets but otherwise not the same 
at all (biological neural nets do not work like deep nets)

• Learns a layered representation



Deep Learning

• Inspired by biological neural nets but otherwise not the same 
at all (biological neural nets do not work like deep nets)

• Learns a layered representation

• Tries to get rid of manual feature engineering



Deep Learning

• Inspired by biological neural nets but otherwise not the same 
at all (biological neural nets do not work like deep nets)

• Learns a layered representation

• Tries to get rid of manual feature engineering

• Upcoming: enforce structure using special layers



Deep Learning

• Inspired by biological neural nets but otherwise not the same 
at all (biological neural nets do not work like deep nets)

• Learns a layered representation

• Tries to get rid of manual feature engineering

• Upcoming: enforce structure using special layers

• Can think of this as constraining what features are learned


